Relating Population-Code Representations between Man, Monkey, and Computational Models
نویسنده
چکیده
Perceptual and cognitive content is thought to be represented in the brain by patterns of activity across populations of neurons. In order to test whether a computational model can explain a given population code and whether corresponding codes in man and monkey convey the same information, we need to quantitatively relate population-code representations. Here I give a brief introduction to representational similarity analysis, a particular approach to this problem. A population code is characterized by a representational dissimilarity matrix (RDM), which contains a dissimilarity for each pair of activity patterns elicited by a given stimulus set. The RDM encapsulates which distinctions the representation emphasizes and which it deemphasizes. By analyzing correlations between RDMs we can test models and compare different species. Moreover, we can study how representations are transformed across stages of processing and how they relate to behavioral measures of object similarity. We use an example from object vision to illustrate the method's potential to bridge major divides that have hampered progress in systems neuroscience.
منابع مشابه
Matching Categorical Object Representations in Inferior Temporal Cortex of Man and Monkey
Inferior temporal (IT) object representations have been intensively studied in monkeys and humans, but representations of the same particular objects have never been compared between the species. Moreover, IT's role in categorization is not well understood. Here, we presented monkeys and humans with the same images of real-world objects and measured the IT response pattern elicited by each imag...
متن کاملConcepts and Affects in Computational & Cognitive Models of Designing
This paper addresses two aspects of theory foundations relating to computational models of creative design cognition based on human designing. It proposes definitions of core concepts to address problems of terminology and epistemological coherency in this area. The paper argues that neurological findings and a greater understanding of the roles of closure activities imply that benefits can be ...
متن کاملRepresentational geometry: integrating cognition, computation, and the brain
The cognitive concept of representation plays a key role in theories of brain information processing. However, linking neuronal activity to representational content and cognitive theory remains challenging. Recent studies have characterized the representational geometry of neural population codes by means of representational distance matrices, enabling researchers to compare representations acr...
متن کاملMILP models and valid inequalities for the two-machine permutation flowshop scheduling problem with minimal time lags
In this paper, we consider the problem of scheduling on two-machine permutation flowshop with minimal time lags between consecutive operations of each job. The aim is to find a feasible schedule that minimizes the total tardiness. This problem is known to be NP-hard in the strong sense. We propose two mixed-integer linear programming (MILP) models and two types of valid inequalities which aim t...
متن کاملDeep Supervised, but Not Unsupervised, Models May Explain IT Cortical Representation
Inferior temporal (IT) cortex in human and nonhuman primates serves visual object recognition. Computational object-vision models, although continually improving, do not yet reach human performance. It is unclear to what extent the internal representations of computational models can explain the IT representation. Here we investigate a wide range of computational model representations (37 in to...
متن کامل